
PHYSICAL REVIEW A VOLUME 38, NUMBER 2 JULY 15, 1988

Defects in fiexible membranes with crystalline order

H. S. Seung and David R. Nelson
Lyman Laboratory of Physics, Haroard Uniuersity, Cambridge, Massachusetts 02I38

(Received 3 March 1988)

We study isolated dislocations and disclinations in flexible membranes with internal crystalline
order, using continuum elasticity theory and zero-temperature numerical simulation. These defects
are relevant, for instance, to lipid bilayers in vesicles or in the L& phase of lyotropic smectic liquid
crystals. We first simulate defects in flat membranes, obtaining numerical results in good agreement
with plane elasticity theory. Disclinations and dislocations eventually exhibit a buckling transition
with increasing membrane radius. We generalize the continuum theory to include such buckled de-

fects, and solve the disclination equations in the inextensional limit. The critical radius at which
buckling starts to screen out internal elastic stresses is determined numerically. Computer simula-
tion of buckled defects confirms predictions of the disclination energies and gives evidence for a
finite dislocation energy.

I. INTRODUCTION

The melting transition in two dimensions can be
thought of as the destruction of crystalline order by pro-
liferation of topological defects. ' The mechanism of
defect-mediated phase transitions involves a delicate bal-
ance between energy and entropy, first elucidated in a
famous argument by Kosterlitz and Thouless. ' They ob-
served that a dislocation with Burgers vector b in a 2D
(two-dimensional) crystal of radius R has an energy of or-
der Eob ln(R /a), where Eo is the 2D Young's modulus
and a is the lattice spacing. This energy cost suppresses
the formation of dislocations at low temperatures. How-
ever, there is also an entropy of roughly 2kttln(R /a) as-
sociated with a dislocation, since it can be located at
(R/a) possible positions. Above the critical melting
temperature kg T Kpb the entropy term dominates,
dislocations proliferate, and the crystal melts into a hex-
atic phase. Another type of defect, the disclination, has
an energy of order Kps R, where s denotes the disclina-
tion charge. Its energy diverges so rapidly with system
size that disclinations are not likely to occur naturally in
2D crystals.

In the general case of melting of flexible membranes,
the balance between energy and entropy outlined above is
upset. An arbitrary membrane is not confined to a plane,
but instead may freely assume the shape of a general
two-dimensional manifold. A simple physical example of
such a system might be a large vesicle (lipid bilayer)
brought below its 2D equilibrium freezing temperature,
or an L13 lyotropic srnectic phase with the layers forced
apart by the addition of water, in analogy to what has
been accomplished already for lyotropic smectics with
liquidlike in-plane order. To describe the elastic proper-
ties of such systems, we must add a bending energy
(which depends on the membrane's curvature) to the in-
plane stretching energy.

A flexible membrane can relieve the strain field sur-
rounding a defect by buckling out of the plane and trad-

ing stretching for bending energy. For example, we can
create a positive disclination by cutting an angular sector
out of a circular membrane and rejoining the edges of the
cut. If the membrane is constrained to a plane, rejoining
these edges requires a great deal of stretching. But if the
membrane is allowed to buckle into a cone, the strain
field is "screened" out, and only a logarithmically diver-
gent bending energy remains. Nelson and Peliti have ar-
gued that the energy of a buckled dislocation (which can
be regarded as a tightly bound disclination pair) remains
Pnite as the system size tends to infinity. Their argument
predicts a finite density of unbound dislocations at any
nonzero temperature; the membrane must melt, presum-
ably into a hexatic phase.

One can also approach the subject of topological de-
fects in membranes from a different perspective, that of
continuum elasticity theory. The elastic properties of a
membrane are similar to those of an idealized thin plate
of homogeneous isotropic material. Although the theory
of thin plates was established long ago, almost all of its
extensive literature is devoted to the special case of small
deflections. Membranes with defects require a theory of
large deflections, which is highly nonlinear and relatively
unexplored. In addition, an understanding of the buck-
ling behavior mentioned above requires the theory of
elastic instability. These two elements of nonlinearity
and buckling instability combine in an interesting way
when applied to defects in membranes.

This paper begins with a review of results from plane
elasticity theory. The energies, of flat dislocations and
disclinations are shown to be proportional to lnR and R,
respectively. We then construct a numerical model of a
flat membrane by defining a discrete stretching energy.
Energies calculated using this model match the continu-
urn theory prediction for the dislocation precisely. How-
ever, the disclination calculations expose an inaccuracy
of the theory that is due to neglect of nonlinearities in the
strain tensor. We derive continuum equations for buck-
led membranes with defects, following closely the theory
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of thin plates. The equations governing buckled dis-
clinations can be solved exactly in the inextensional limit
(infinite elastic constants), yielding energies proportional
to lnR. Through scaling arguments, the dependence of
the buckling radius on the elastic parameters can be
determined up to a proportionality constant. This con-
stant can be calculated for disclinations and dislocations
using an infinitesimal stability analysis formulated by
Mitchell and Head. We extend our numerical model to
buckled membranes by defining a discrete bending ener-
gy. Comparison of numerical with analytic results for
the disclination provides a valuable check of our numeri-
cal model. The energy of a buckled dislocation increases
slower than any logarithmic divergence, and is probably
finite. Note that any increase which is slower than loga-
rithmic will lead to unbound dislocations at finite temper-
ature, because the entropy in the Kosterlitz-Thouless ar-
gument still increases logarithmically.

F, = ,' J —d r(2pu, ~)+A,ukk), (2.6)

where A, and p are the two-dimensional Lame coefficients,
and indices run over the values 1 and 2. Although the ex-
act form of the strain tensor is u;~ = —,'(B;u +B u;
+B,ukBJu„), for small displacements we may omit the
terms quadratic in uk, leaving

u;, = —,'(B;u, +B,u;) . (2.7)

If we minimize E, with respect to variations in u, we ob-
tain the equation

B;a;J.=0,
where the stress tensor o.

;~ is defined by

(2.8)

which is valid for small B;u., turns (2.4) into an equation
involving displacements.

The stretching energy is taken to be quadratic in the
strain,

II. CONTINUUM THEORY OF FLAT MKMBRANKS (r(J 2pu(J +——((,uk~5(J . (2.9)

E(;B(B;u( =b, 5(r —ro), (2.2)

where r0 is the location of the dislocation.
Disclinations are defined in terms of the bond angle

field 8, which measures the orientation of bonds around
each atom. Traversing any closed loop L containing the
disclination core increments 8 by the "disclinicity" s,

rt'), de= $,B,eax, =s . . (2.3)

In a lattice with n-fold rotational symmetry, s must be
some multiple of 2m. /n to ensure that the multivaluedness
of 0 represents no physical ambiguity. We will be study-
ing triangular lattices (n =6) and small disclinicity, so
the values s =+2m/6 are most important. As before, the
difFerential form of (2.3) is a statement about noncommu-
tativity of derivatives,

e,( B,B,8=s 5(r ro)., . — (2.4)

where r0 now denotes the disclination location. Making
the substitution

0= —,'e,,B;u

In plane elasticity theory, a deformation is represented
by a displacement vector field u(r) =(u, ,uz), which maps
the point r=(x,y) to r+u. If there are no defects, the
deformation is a single-valued mapping of the plane onto
itself. In the presence of a dislocation, however, u be-
comes a multivalued function. Traversing any closed
counterclockwise loop L containing the dislocation core
increments u by a constant vector b, known as the
Burgers vector. In mathematical language,

g, du„= ),B,u„dx (2. 1)

Since the Burgers vector is always equal to some lattice
vector, the multivaluedness of the displacement
represents no physical ambiguity. If we express (2.1) in
differential form, we see that derivatives of u do not com-
mute, since

e; e,„B B„X— V X5;, . (2.11)

The parameters K0 and 0. are the two-dimensional
Young's modulus and Poisson ratio, and can be expressed
in terms of the 2D Lame coefficients,

4(M(p, +((,)

2p+ A,

A,

2p+ A,

(2.12a)

(2.12b}

We would like a constraint on 7 which guarantees that
(2.11) can be solved for the displacements. This con-
straint is easily found by applying 6 keJlakal to both sides
of (2.11), obtaining

V X=e,„e,(B„B(u,,=~,„~,(B„B(,'(B,u, +B,u—, } .1 4

0

(2.13)

If the right-hand side of this equation vanishes, the strain

Even though it would be possible to solve (2.8} for the
vector displacements directly, it is more convenient to re-
formulate the problem in terms of a scalar potential, the
Airy stress function X.

Because O. ,J is symmetric and has zero divergence, it
can be written as o;J =e;ke,(B„B(X,or, equivalently,

BX BX BX
+xx p& ~yy i~ ~xy

By Bx BxBy

Although any choice for 7 yields a stress tensor that
satisfies Eq. (2.8), the choice cannot be arbitrary. For any
physically realizable stress distribution, there must corre-
spond some displacement vector field related to 7 via

—,'(B;uj+Biu;) =u;J.

I+o
sc0 0
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u; is said to be "compatible" with the existence of a
single-valued displacement field, i.e., there exists some
single-valued solution u; of (2.11). If the right-hand side
does not vanish, solutions of (2.11) must be multivalued.
Hence the right-hand side is known as the "incompatibil-
ity, " and e;I, e~IBkBI is known as an "incompatibility
operator. "' '"

Equation (2.13) can be transformed further into

1 4V iY=elkEjldkBl &(8 1l —5 M )
0

+~ a~,I~k~I~,

Substituting (2.16b) for g and integrating, we find that

K0b
F, = ln

8m a
(2.18)

is the dislocation energy contained in the region a & r & R
of a membrane of infinite size. In the Kosterlitz-Thouless
entropy argument, this formula was used to approximate
the energy of a dislocation in a membrane of radius R.

The case of the disclination is more subtle, because we
cannot so cavalierly neglect the boundary conditions.
For an isolated disclination at the origin, Eq. (2.15) and
its solution are

~kl ~k ~ I ~ + ~ik ~k ( 'Ej l d l dj ll ' )

= g s 5(r —r )+ g b; e;kBk5(r —r&),
a P

(2.14)

V X=s5(r),
0

K0s
(Ar +r lnr) .

8m

(2.19a)

(2.19b)

V X=s(r) .
0

(2.15)

where s denotes the disclination charge of a disclination
at r, and b~ denotes the Burgers vector of a dislocation
at r&. The microscopic origin of incompatibility is now
manifest. The last line of (2.14) is simply the density of
disclinations s (r), if dislocations are thought of as dis-
clination dipole pairs. ' So 2D elasticity theory consists
of just one equation, the biharmonic equation

Without the homogeneous term Ar, (2.19b) would imply
a strain on the boundary that diverges like lnR. This is
clearly unacceptable, for Eq. (2.6) is a harmonic approxi-
mation valid only for small strains. The material will of
course fall apart if the strain diverges. Because of rota-
tional symmetry,

8 1BX
ar r ay

But solutions of this equation are not unique, for we may
add any solution of the homogeneous equation. Without
specification of boundary conditions on 7, the theory is
still incomplete. We shall focus on the case of free
boundary conditions, where the edges of the membrane
are totally unconstrained. Then the body forces
P; =a;k n k (where n is the outward unit normal) must
vanish on the edge of the membrane. This means that the
components o.„„and o„& must be zero all along the
boundary of a circuhr region.

For an isolated dislocation at the origin, Eq. (2.15) be-
comes

vanishes identically for (2.19b). Requiring that

1 aX 1 aX~rr= +PP

vanish at the boundary r =R fixes the value of A,

A = ——,
' —lnR .

The stress function is then

K0s r 1
r ln

8m R 2

(2.20)

(2.21)

V X=b;e; B,5(r),
0

with solution '"
K0

b;e;J.r lnr .

(2.16a)

(2.16b)

and the energy of the system is

K0s
F, = R

32~
(2.22)

F, = fd r(VX)
0

1+o.
«Eke, ldkd, (B;&d,X) .

0
(2.17)

To satisfy the boundary conditions on a finite region, we
must add extra terms to (2.16b). However, these terms
vanish in the limit of infinite system size, so we may
neglect them. In other words, solution (2.16b) satisfies
the boundary conditions at infinity, since the stresses
o „„,o.„&~0 like 1/r as r ~~. The energy of a disloca-
tion is most conveniently evaluated by writing (2.6) in
terms of the stress function,

The fact that the R ~~ limit of (2.21) does not exist
means that there is no solution of (2.19b) satisfying
boundary conditions at infinity. The result (2.22) is not
hard to understand. Because the strain field of an isolat-
ed disclination is roughly constant for large r, the stretch-
ing energy is simply proportional to the system size. '

It is worth noting that the situation is rather different
for a charge neutral collection of disclinations with van-
ishing net Burgers moment. In this case, disclination
charge and Burgers vector neutrality ensure that the net
strain field decays to zero at large r, so A can be set to
zero. The individual disclinations in the ensemble then
interact with an r lnr potential. '

pierluigi cesana
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III. NUMERICAL SIMULATION OF FLAT MEMBRANES v'3
k=p = (3.8)

We consider a 2D triangular lattice of atoms with unit
mean spacing. ' Any deformation maps the lattice points
r, into new locations r,'. We deSne a stretching energy

F," ""=,'e g-(lr.' r—'b
l

—1)',
&a, b&

(3.1)

Fdiscrete ]
& ~ U

2
a

(3.2)

where U, is the local sum over nearest neighbors b of
atom a,

U, = —,
' g (

l
r,' —rb l

—1)
b

(3.3)

To derive the continuum limit, imagine that some con-
tinuous deformation map r~r' is given which matches
our discrete map r, ~r,' =r, +u, (r, ) at the lattice
points. Let g; be the metric tensor induced by the defor-
mation

g; =8;r' B.r' .

Then we can make the approximation

(3.4)

I r.' rb
l =[g;,—(r. )r.'br.'b]'"
=

I [5; +2u,j(r, )]r,'br, b ]
'

=[1+2u;j(r, )r,'b,'b]

where the sum is over distinct nearest-neighbor pairs of
atoms a and b. This can be reexpressed in terms of a
stretching energy density U„

and calculate the 2D Young's Inodulus and Poisson ratio
using (2.12),

Ko —— —e, o. =—.2
v'3 (3.9)

To construct membranes with defects, we start out
with a hexagonal region of the lattice. The hexagon is
composed of six equilateral triangular wedges. If we ex-
cise one wedge and attach the exposed edges, we obtain a
positive disclination. The negative disclination is con-
structed by cutting a slit and inserting a seventh wedge.
The dislocation is a hexagon with a line of atoms running
from a vertex to the origin removed, or equivalently, a
positive and negative disclination separated by a single
lattice spacing. Sample configurations are depicted in
Fig. 1.

In Sec. II we minimized the stretching energy function-
al F, [u;~] to obtain the equations of plane elasticity
theory. We have shown that the continuum limit of our
function F, '"""of 2N coordinates (where N is the num-
ber of atoms) is precisely this functional. Hence minimiz-
ing F '""" should give the same results for large N.S

There are two algorithms for minimization of a function
which utilize gradient information: conjugate gradient
and variable metric. ' The conjugate gradient method is
superior for our purposes because it requires less storage.
Like most methods of multidimensional minimization, it
is performed as a series of one-dimensional minimiza-
tions. Its special feature is that it constructs a series of
"noninterfering, " or "conjugate" directions. Minimiza-

=1+u;j(r, )r.br,'b, (3.5)

since the strain tensor is defined by the equation

g;J =5;j+2u;J, and the undeformed distance
l r,b l

is uni-

ty. As the index b ranges over the nearest neighbors of
atom a in Eq. (3.3), the unit ~ector r, b =r, —rb steps over
the vertices dp of a regular hexagon. This fact enables us
to evaluate the stretching energy density

6

U, =—,
' g (u, dpjp)

P=1

8 ~ij ~kl(5ij 5kl+5ik5jl+5il5jk )

=—',(2u,j+ukk ), (3.6)

where the strain tensor is understood to be evaluated at
r, . Thus the continuum limit of (3.2) becomes

F '"""='g U = — Jd U( —)
1

S 2 0
a

E d r(2u, .j+ukk ) .
8

(3.7)
(b)

(c)

Comparing with (2.6), we can read off the 2D Lame
coefficients

FIG. l. (a) Flat dislocation. (b) Flat positive disclination
(s =2~/6). (c) Flat negative disclination (s = —2m/6).
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tion along one direction does not "disturb" the effect of
minimization in the other conjugate directions.

Figure 2 is a graph of F, /Eo versus R for flat disloca-
tions with unit lattice spacing and Burgers vector. The
semilogarithmic plot confirms the plane elasticity predic-
tion (2.18), for it is linear with slope I/8n. to within 1%
accuracy. The continuum limit is reached for surprising-
ly small system size. In Fig. 3 we see that F, /Kps R for
a flat disclination does indeed approach a constant, as
predicted by Eq. (2.22). However, it approaches 0.0080,
rather than the constant I/32m=0. 0099 following from
(2.22). The discrepancy is due to two linearizing approxi-
mations made in plane elasticity theory: Eqs. (2.5) and
(2.7) approximate the bond angle 8 and the strain u; to
be linear in the displacement. For dislocations, these for-
mulas are accurate far from the defect core (d;u& -b/r),
but for disclinations they neglect terms of order
(8;u. ) -const-(1/6) for large r.

+
0.025

0.020

+ positive disclination
o negative disclination

Kp8~R2
o

0.015

0.010

0
+
0

I I I I I I I I I I I I I I I I I

IV. CONTINUUM THEORY
OF BUCKLED MEMBRANES I I I I I I

10
I I I I I I I I I

20 30 40
If we are to describe membranes which buckle out of

the plane, we must add an extra function f to describe
the "deflection. " Then any deformed state is described
by the displacement u(r)=(u, , u2) and the deflection
f(r), which map the point (x&,xz, 0) in the reference
state to (x, + u „xz+ u 2, f).

The total energy is now a sum of stretching and bend-
ing contributions. The stretching energy F, is the same
as it was in the flat case (2.6), except that the expression

FIG. 3. Stretching energy (in units of Kos ) divided by R
plotted vs R for disclinations.

(2.7) for the strain must be modified. The exact form of
the strain tensor is up = —,'(8;uJ +8~u;+8;uk BJuk

+8;fB f). For small displacement gradients, we may
again omit the terms quadratic in uk, leaving us with

I I I I f I I u,, =-,'(a, u, +a, u, +a,I a,y) . (4.1)

0.15

O. fO

++
++

+
++

+
+

+

In much of the work done on the theory of plates, the
term quadratic in f is also neglected. One is then left
with the ordinary form of the strain tensor
u;J

———,
' (8;u~ +B~ u;) and thus a completely linearized

theory. Since we will be concerned with the case of large
deflections, we must retain the term quadratic in f, as
there is no term of lower order in f.

The Helfrich bending energy of a membrane depends
on its mean curvature H and Gaussian curvature K,

Fb= fdS( ,'irK +s—GK}, (4.2)

0.05

where dS is the area element, ~ the bending rigidity, and
KG the Gaussian rigidity. ' In terms of the deflection f,
these curvatures are given by'

Vy det(B;8,f)
H =V. K=

&I+ [VII' ('+ IVI I
)

(4.3}

p pp
1

I I I I I I I I

5 10
I I I l I

50
If

~
Vf

~

is small, the forms

H=V f, K=det(a, a,I)=—E;„E;a„a—, (a,Ia,y)

(4.4)
FIG. 2. Semilogarithmic plot of stretching energy (in units of

Ko) vs R for a flat dislocation with unit lattice spacing and
Burgers vector.

are good approximations, and we can rewrite the bending
energy as
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Fb = -,
' jd "(v'f )' —,'—,Jd" &;k &~1a„a,(a,f a,f ) .

(4 5)

not be solved exactly, even in very simple cases."
For an isolated positive disclination at the origin, we

assume rotational symmetry and write Eqs. (4.10) away
from the disclination core as

The total energy F is then the sum Fb+F, of the bending
and stretching energies. An expression like (4.5) also
emerges in the theory of thin plates, where ~ and ~G are
expressed in terms of the bulk elastic constants.

Taking variational derivatives of F with respect to u
and f yields the equations

V4 1 d dXdf
r dr dr dr

2
1 4 1 d df

V 1+ =0,

(4.11a)

(4.11b)

«V f=a;(o,,a f),
a,.o,, =o,

(4.6a)

(4.6b)

where

2 1 d d
V =— r

r dr dr
'

where the stress tensor 0.; is related to the nonlinear
strain tensor as in Eq. (2.9). Again, we introduce the
Airy stress function and derive an equation for it with the
same manipulations used to obtain (2.14),

' V'X ,'e,„~„—a„—a,(a,fa,f)
0

= ps 5(r —r )+ g b; e;kak5(r —rp) . (4.7)
a P

Finally we can write a complete system of equations:

rg= —~ln
a
1/2

(4.12a)

(4.12b)

With the help of Eqs. (4.1) and (2.9), the displacements
u, u can now be calculated:

It is not diScult to guess a trial solution of these equa-
tions,

«V f+F.;„E;a„a,(a;X a f)=0, (4.8a) s s K(1+o) x
2~y~ 2~

+ Z
(4.13a)

V X=s(r) —E(r),
E0

(4.8b)

1 af 1 afV'f+ — + —, , =0,
Ko r ar r

a , 1 a 1 a'f
Koar rarrag2

(4.9a)

(4.9b)

which must be satisfied on the boundary of a circular re-
gion.

When expanded in full, the equations become

a'x a'f a'x a'f' a'x a'f
ay ax ax ay ax ay ax ay

2
a2f

BX BP

1 4 af af
0

VX+

(4.1Oa)

(4.10b)

For a defect-free membrane, the 5-function terms vanish,
and we are left with the von Karman equations for large
deflections of thin plates. ' These coupled nonlinear par-
tial differential equations are "very complicated, and can-

where s(r) and E(r) are the disclination density and
Gaussian curvature, respectively. Equation (4.8b) is al-
most the same as (2.15), except that the Gaussian curva-
ture now acts like a source of disclinations and can
"screen" out the stress. Since the Gaussian curvature
term in (4.5) can be turned into an integral over the
boundary, it affects not the equations on the interior but
rather the boundary conditions. To our previous condi-
tions o.„„,o„&——0 we must add

s s «(1+o) y
u = xP — y+ —2,

where P = tan '(y /x). They in turn give a bond-angle
field of 8= —,'e,"a,u =(s/2m)P, which manifestly satisfies
the integral condition (2.3). Performing the integral in
(4.5), we obtain

a'f a'f
BX Bg

a2f
CIX Bg

2

=s(r) . (4.15)

Thus, the Gaussian curvature must exactly equal the dis-

Fb —s~ ln
R

(4.14)
a

for the bending energy.
Although it would appear that we have found an exact

solution, comparison with the original form of the von
Karman equations (4.8) reveals that (4.12) is not a true
solution because the left-hand side of Eq. (4.8b) is propor-
tional to V 5(r), while the right-hand side vanishes. If we
attempt to bypass this issue by deleting a small disk of
material around the origin, we create an inner boundary
on which o „„and 0.,&

must vanish. One can easily calcu-
late from the expression (4.12a) for X that u„„behaves
like 1/r, so the inner boundary condition is badly violat-
ed if we excise a small disk.

Equations (4.12) are in fact an exact solution, but only
for a limiting case, that of infinite elastic constants,
p, i,~ao. This "inextensional" limit is exemplified by a
piece of paper, which is free to bend, but is essentially im-
possible to stretch. Provided that 7 remains finite, taking
the limit Eo~ ~ eliminates the term V4X/Eo from (4.8b)
and leaves simply

pierluigi cesana
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G

K
(4. 16)

where 4 is a function that loses its aG/ir dependence in
the large R limit. Since the stretching energy (2.17) van-
ishes in the inextensional limit, the total energy is just the
bending energy. Equations (4.12) and (4.14) satisfy the
inextensional equations, and exhibit the properties dis-
cussed above. The functions X/l~, f, and F& /s. are indeed
independent of the elastic parameters, as expected in the
limit of infinite system size.

To similarly solve for a negative disclination, we aban-
don the assumption of azimuthal symmetry, and write
the von Karman equations in general polar coordinates,

a'X 1 a'f
Qrz r~ Qpz r r)r

Bf 1 BX 1BX+ +-
gr& r& gy& r r)r

B 1BX
Br r BP

8 1 df
"or r BP

(4.17a)

1 4 df 1 Bf 1 df
Ko 5r' r' ()({'i' r dr

I+ — +—

a la
Br r BP

2

=s 5( r ) . (4.17b)

A solution for the negative disclination of charge —
~

s
~

when Eo~ ~ is given by

clination density in the inextensional limit. The ~ depen-
dence of the inextensional equations can be scaled out by
first writing (4.8a) in terms of P/i~ and f. The only pa-
rameter left is aG/~, which enters through the boundary
conditions. In the limit of infinite system size, this pa-
rameter has no effect either, provided that the derivatives
of f in (4.9) fall off to zero. The bending energy must
take the form

FI, =3 R
a

(4.21)

1—2'

. 2
—1 =0.663 . (4.22)

Although this reduces to our previous result a =v's/n. in
the small s limit, for s =m. /3 the estimate
a = Vs /ir =0.577 is too low by about 9%.

The approximation (4.4) for the mean curvature is also
in error, since

~
Vf

~

is not small. Using the exact ex-
pression for the mean curvature given in (4.3) and the
area element

Unlike flat disclinations, buckled disclinations of equal
and opposite charge do not have the same energy.

The case of the dislocation is very diScult. Because
the equations are nonlinear, the simple tactic of superpos-
ing the solutions for positive and negative disclinations
fails. Again, only in the inextensional limit do we have a
chance of obtaining an analytic solution. We easily
solved the disclination equations because all functions of
the form f =rqi(p) satisfy E(r) ac5(r). Similarly, the
key to solving for the dislocation would be to find a class
of functions which satisfy K(r)=b;e; 8~5(r). Such func-
tions (if they exist) remain unknown to us.

Recall that plane elasticity theory was a success for
dislocations but only an approximation for disclinations.
Similarly, Eqs. (4.10) are not likely to be quantitatively
accurate for disclinations because Vf ~

is rather large.
However, it is possible to determine the deformation of
an inextensional positive disclination exactly. To insure a
vanishing Gaussian curvature, we assume that the shape
must be a generalized cone, i.e., have the form
f(r, p)=riII(p). Furthermore, the angular factor qi(p)
must be equal to some constant a, by rotational symme-
try. We fix a by requiring that the circumference of a
unit disk missing a wedge of angle s equal the circumfer-
ence of the base of the corresponding cone,

' 1/2

(4. 18a)

(4.18b)

rg= 3K ln

f= r sin(2$) .&2 Is
3K

The displacements are most easily obtained by working in
polar coordinates,

dS=(1+
i
Vf i

)'i dx dy,
the bending energy with f =ar is then exactly

2 R
Fb ——'V dS H2= mw lnb

( 1+a2)1/2 a

(4.23)

9»=— r sin (2P),3'
r[P+ —,', sin(4$)] .

The corresponding bond-angle field

(4.19a)

(4.19b)

1—
2m'

= 1.152m ln
R
a

1—2'
R

mw ln
a

(4.24)

a a0=
2r Br

( ru ~ ) — = — [P+—,
' sin(4$) ]

BP 2m.

(4.20)

correctly satisfies the integral condition (2.3). The bend-
ing energy is given by f{r,g)=Pr sin(2$) . (4.25)

In contrast, Eq. {4.14) gives Fi, = 1.047' 1n(R /a).
Although we cannot solve the negative disclination ex-

actly, we can derive a variational upper bound for the
bending energy using the ansatz
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Fb -2.515K ln
R
a

(4.26)

which is an upper bound on Fb since the true solution is
the one of minimum energy.

A geometric calculation analogous to that sketched
above for the cone (this time with elliptic integrals) yields
P=0.551. The bending energy of this configuration is

I 7 I 7b= —b, s= s.
A,

2 (5.4)

For an isolated dislocation we can index every solution
g' = (X *,f*

) by its Burgers vector b, system size R, and
parameters Kp/K and KG/K. Under the above rescaling
procedure g* is transformed into another solution
g' = (X',f '),

&p KG &p KGR. . .b ~P' A.R. . . b—. (5.5)
K K Kg K A,

V. SCALING THEORY AND THE BUCKLING
TRANSITION

So far, only in the limit of large Kolv and R do we
know for certain that buckled dischnations exist. For
both disclinations and dislocations, and any set of param-
eters, we would like to answer the following question:
Does a buckled solution exist and is it stable? As we have
seen for disclinations, the energy of a defect is less diver-
gent for large R when it is buckled than when it is flat.
Consequently our "phase diagram" should have a large R
"buckled phase" separated from a small R "flat phase"
by some critical buckling radius Rb. We could also
trigger the transition by holding R fixed and varying K or
Ep ~ The dependence of the buckling radius R b on these
elastic parameters can be determined almost completely
through simple scaling arguments.

First of all, it will prove convenient to redefine the
stress function to be X=X/Ko. Then the von Karman
equations (4.10) become

By choosing rli, = 1/b and ~=v/Ko, we can in fact re-
late all such solutions to a single reference solution with
unit coupling ratio Kola and unit Burgers vector b,

Kp
R. . .b

K K

EpbR KG
, 1, , 1

K
(5.6)

Rb ——y, (~G /~)
Ko/s

/

(5.7b)

When the reference solution buckles at a critical value x,
of the ratio KobR /a, this instability must occur for the
whole family of solutions. Therefore the critical buckling
radius Rb must obey (dislocation)

Rb ——x, (aG/a) (5.7a)
Kpb

'

where x, is a dimensionless function of the ratio a G
/a. A

similar derivation for the disclination gives a critical
buckling radius

1/2

By ax Bx By Bx By Bx By
'2

ax By Bx By
=s(r) . (5.1b)

It is evident from these equations and from the boundary
conditions (4.9) that their solution 1( =(X,f) depends only
on the ratios Ko/~ and ~G/a. The displacements are ob-
tained by solving an equation like (2.11),

—,'(a,.u, +a, u, ) =(1+~)~,.~,„B.B„X—~V'XS,,
—

—,'B;fa f. (5.2)

Changing the Poisson ratio cr will change u; but not 7 or

f'(r'}=&~f*(r), s'(r')= s*(r) .
X4

These new functions satisfy (5.1) and the boundary condi-
tions (4.9) if Ko/i~ is replaced by Ko/i~r. The rescaled
disclination density corresponds to the following rescal-
ings of Burgers vector and disclination charge:

Given a particular solution f =(X,f ) of (5.1) for
some disclination density s*, we can generate a whole
class of related solutions via a simple rescaling procedure.
We define new functions f '(r'), X'(r'), and s'(r') by

r' =Ar, X'(r') = rX *(r},
(5.3)

where y, is another dimensionless function.
Mitchell and Head have estimated x, and y, for

~G /I~ = —0.7. They use two (basically equivalent)
methods. First of all, infinitesimally close to the buckling
transition, the von Karman equations can be solved be-
cause nonlinear terms in f can be neglected. This
method is only tractable in the simplest case of the posi-
tive disclination. The second method is to investigate the
stability of the energy functional to infinitesimal pertur-
bations about the flat defect solution. For this purpose
they simply use the stress tensor of the flat defect. After
expanding f in some basis set of functions, they are able
to write the energy functional as a quadratic form in the
coeScients of the expansion. The buckling radius Rb of a
circular disk is determined by finding when the smallest
eigenvalue of the quadratic form changes sign.

We have corrected errors in the Mitchell-Head analysis
and carried it to higher order. The results for positive
and negative disclinations are depicted in Fig. 4(a) for
various va1ues of KG/K. Interestingly, each graph ap-
proaches zero for some value of KG/K. To understand
this behavior, recall that the buckling transition is due to
the competing effects of two energies. The bending ener-

gy tends to stabilize the flat solution, while the stretching
energy makes it unstable. For certain values of KG/K, the
bending energy also becomes unstable, which means that
there is nothing to prevent buckling at any system size.
In terms of the principal curvatures c, and c2 the Hel-
frich energy takes the form
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Fdiscrete 2
b

(a,P)

= iT g ( 1 —n .nii) .
&a,P)

(6.1)

The sum is over nearest-neighbor pairs of normals n and

n&, and the normals have been assigned with a consistent
choice of orientation. To derive the continuum limit, we

suppose that the shape of the membrane is parametrized
by the map x(tr;) (i =1,2). The coordinate frame for the

.e and the second fundamental form byg;, =e;.e, , an

0, =, 8 n ' In the continuum limit the difference
n —n& should become the gradient of the normal vectorn~ —np s OU

field,

(b)

FIG. 5. (a) Buckled positive disclination (Ko/K=2000). (b)
Buckled negative disclination (Ko /K =2000).

Fb 2x
——f—dS g'jt};n t} n. . (6 2)

(6.3)

Using the identity e'e&k ——5j5'k —5'k5j, or, equivalently,

(6.4)

we rewrite the integrand of (6.3) as

g QikQji (g Qik } +e ernng Qjig Qik

=(Q') +e"E „Qi Q;"=H 2K, — (6.5}

Substituting t);n=Q,"ek allows us to express the bending
energy in terms of 0;,

Fb = ,'ir f dS—g"g Q;kQ, i .

for negative disclinations. The positive disclination result
agrees with (4.24} very well, and the negative disclination
result is only about 10%%uo less than the upper bound (4.26).
In Fig. 7 are graphed the energies of buckled disclina-
tions versus R for various values of Ko/K. Each curve
branches off from the flat disclination curve at the critical
buckling radius Rb. The smooth way these curves join
onto the flat disclination curve suggests a weakly first-
order or possibly continuous buckling transition. Figure
8 shows that the radii of buckling are linear in Qir/Kos
[as predicted in (5.7b)], with slopes

Fb=2K dS H —2E (6.6)

This is nothing but the Helfrich energy (4.2) with bending
rigidity K and Gaussian rigidity KG ———K. The relation-
ship between K and the microscopic parameter K is most
easily derived by bending a triangular lattice into the
shape of a cylinder. The sum in (6.1) can then be calcu-
lated by hand easily, and compared with the integral in
(6.6). This procedure yields

v'3
K= K

2
(6.7)

Buckled positive and negative disclinations are depict-
ed in Fig. 5. A check with the inextensional calculations
of Sec. IV results from simulating a positive disclination
with Ko/ir so large that Rb is much less than a lattice
spacing. Figure 6 is a semilogarithmic plot of F/K versus
R for buckled positive and negative disclinations with
Eo jK=2000. The energies behave like

where H =trtQkI is the mean curvature and
K =det t Qk ) is the Gaussian curvature. Our final expres-
sion for the continuum limit is

F

I I I I I I I

+ positive disclination
~ negative disclination

OO
O

Oa
O

O
O

++
++

+++
++

= 2000

RF =1.159Kln
a

(6.8a)
o

1

I I I I I I I

5 10

for positive disclinations and
r

R
Fb =2.276K 1n

a
(6.8b)

FIG. 6. Semilogarithmic plot of energy (in units of K) vs R
for buckled disclinations. Here Ko/k=2000, which places these
systems in the inextensional limit.
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Rb

1/2

= 13.0+1.0 (6.9a)

for positive disclinations
1/2

Eos =14.2+1.0 (6.9b)

for negative disclinations. These results are in rough
agreement with the continuum Mitchell-Head bounds
(5.10), obtained using (2.19b), which as stated before are
somewhat inaccurate for disclinations.

The curves in Fig. 7 all become logarithmic beyond the
buckling radius, which indicates that the inextensional
limit is reached for large R. This notion can be made
more precise through scaling arguments. Let us divide
the membrane into the regions 0(r &Rb and Rb & r &R,
where Rb is the radius of buckling. Let F;„(a,Ko) be the
energy of the inner region, and F», (R, ir, Ko) the energy
of the outer region. Given some solution of the von
Karman equations for the parameters a and Ko, rescale it
via (5.3) with ~=X . Then the disclinicity s is left un-

changed, and

4 I I I I I I I

+ Kp/Fc = 20
x Kp/k —10

4Kp/K = 2

o Kp/K =1
~ flat (Kp/Fc -~ 0)

I(o
F,„,(R,a-, Ko)=F ' 'A2 (6.10)

I I I I I I I I I I I I I I

la.s — + positive disclination
~ negative disclination

" greater than the critical b
sociated with the left h „d

then choose A, =Rb/R &g1 and see from the right-hand
side that this system is equivalent to one of smaller size,
but with an enormous elasticity parameter KoR /Rs
Thus membranes are effectively in the inextensional limit
for large R. Assuming the inextensional limit applies for
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FIG. 7. Semilogarithmic plot of energy (in units of Ko) vs R
for buckled positive (a) and negative (b) disclinations. The flat

disclination energy is also plotted for comparison. For every
value of E0/k, the graph of the buckled disclination energy
separates from the flat disclination energy at some critical ra-
dius Rb.
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FIG. 8. Radius of buckling vs Q~/I Os for disclinations.
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all R E~ Rb, we would expect

F(R,a, KO)= ' '
1

1.159
P 2 276 R

+F;„(~,KO), (6.11)

hnear as expected from (5.7a). To corn
Mit h 11-H ad ltresu ts we extract a slo

1 R h'h, w ic are most likel to
proximation to thee continuum limit,

where the numerical constants for osi
'

disclinations have b
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proximation for F can b b
Hat disclination of size Rb
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Es
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F R, , p—
2~

(R i,R2, &,KO) =F(AR AR A,R, , 0 —,, 2, a.,KO). (6.14)

We apply this relation to inextension

(4.16) th t tll ot I
H

o a energy must be given b

F(a, ~,ir, Ko ) =a@oo (6.15)

where C „=limR „e(~,/~, R) is a
en o @GAL and other elastic

a, was defined in Eq. (4.16). The
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Since the rescaling has taken the system even further into
the inextensional regime [Rt', ——(a/R)R&], the last ap-
proximation is a good one. Then the energy in the region
inside R is given by

F(a,R, tc, Ko) =F(a, oo, tc, Ko) F(—R, ao, tt, Ko)

prediction is checked in Fig. 13, which is a graph of dislo-
cation energies F/Ko versus R& /R. All curves do indeed
have approximately the same slope, as predicted by Eq.
(6.18). We can approximate F„by the energy of a fiat
dislocation of radius Rb,

a
R

(6.17)
F„ 1 Rb

ln +c
Sn a

(6.19)

F F
Kob' Kob'

4„Rb
x, R

(6.18)

where x, is the coefficient of proportionality in (5.7a).
The factors in the 1/R correction are arranged to give
agreement with the inextensional prediction (6.17). This

We can now argue as we did for disclinations that

dislocations behave as if they were inextensional for
sufBciently large R. Thus the energy of a dislocation, if
bounded, should approach some finite value F„with a
1/R dependence, as in (6.17). In the general case we ex-
pect that

where the dimensionless function c has been added to ac-
count for the energy F,„, outside the radius of buckling.
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